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Abstract 
Many theoretical and applied studies have demonstrated that the anisotropic 
reflectance of the land surface can be used to characterise the structural and 
optical properties of vegetation. The Multi-angle Imaging SpectroRadiometer 
(MISR) has the potential to characterise vegetation structure and consequently 
improve the operational monitoring of vegetation structure in Queensland. The 
aim of this pilot investigation was to produce a quantitative comparison of MISR 
multiple view angle (MVA) measurements and vegetation structure for the 
Southern Brigalow Belt (SBB) Biogeographic Region. Airborne LIDAR data was 
used to estimate foliage projective cover (FPC) at the spatial resolution of 
MISR and was validated using coincident field data. Coefficients describing the 
shape of the bidirectional reflectance distribution function (BRDF) were derived 
by inversion of the linear Ross-Thick Li-Sparse Reciprocal and the non-linear 
Rahman-Pinty-Verstraete (RPV) models against a time series of MISR “Local 
Mode” surface bidirectional reflectance factor (BRF) data. Comparison of model 
inversion accuracy and correlation with FPC revealed the RPV model 
coefficients were related to spatial and temporal variations in vegetation 
structure in the Queensland SBB and are consistent with published findings. 
The application of these data to the operational monitoring of woody and 
herbaceous vegetation cover and change in Queensland is currently 
undergoing further quantitative evaluation. 

 

Introduction 
Vegetation structure is defined here as “the horizontal and vertical distribution 
of components within a plant community” (Jupp and Walker, 1996). The 
structure of vegetation is indicative of the climatic, ecological and disturbance 
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events or regimes that shape a plant community, hence it is recognised as an 
important component in vegetation dynamics (Specht and Specht, 1999). 
Recognition of this importance at regional and continental scales, especially in 
terms of climate and land management, has resulted in the use of satellite 
remote sensing for operational mapping of vegetation structure in Australia 
(Henry et al., 2002). The Statewide Landcover and Trees Study (SLATS) have 
pioneered the application of remote sensing to this problem in Queensland, 
Australia (Danaher et al., 1998). 

Land surface apparent reflectance is dependent on wavelength, illumination 
and sensor view geometry, and is determined by the structural and optical 
characteristics of the land surface. This dependence is described by the 
bidirectional reflectance distribution function (BRDF) (Martonchik et al., 2000). 
In operational remote sensing applications, the BRDF is often viewed as a 
source of error that needs correction before quantitative data on vegetation 
structure such as foliage projective cover (FPC) are derived (e.g. Danaher, 
2002). SLATS currently only uses spectral reflectance variations for detecting 
vegetation structure (Danaher et al., 2004), however the anisotropic reflectance 
of vegetation canopies potentially offers more information directly related to 
vegetation structure (Asner et al., 1998). 

In order to capture BRDF related information, multiple view angle (MVA) 
observations are needed. The Multi-angle Imaging SpectroRadiometer (MISR) 
instrument aboard the EOS-Terra platform is unique as it can acquire quasi-
simultaneous 275 m spatial resolution observations of the land surface at 672 
nm (visible red) with view angles of 0° (Nadir), 26.1° (A), 45.6° (B), 60° (C), and 
70.5° (D) in the forward (f) and aftward (a) directions, and also at 446, 558, and 
866 nm for nadir only (Figure 1). The remaining view angles for these spectral 
bands are typically at 1100 m spatial resolution. This data acquisition strategy 
is referred to as “Global” mode. MISR can acquire 275 m spatial resolution data 
in all spectral bands in “Local” mode, however for an approximately 300 km 
path only due to the volume of data generated (Diner et al., 1998). 

Lovell and Graetz (2002) and Grant (2000) were able to discriminate between 
vegetation structural formations over the Australian continent in a comparison 
of coarse spatial resolution (6 km × 7 km) POLDER I data and the 
independently mapped AUSLIG structural formation classification (AUSLIG, 
1990). This study required independent and coincident data describing 
attributes of vegetation structure at a finer scale, for which Airborne LIght 
Detection And Ranging (LIDAR) was directly applicable. LIDAR is an active 
remote sensing system that operates by emitting light pulses and measuring 
the time it takes to reflect off vegetation foliage layers and the ground surface 
and return to the sensor. Based on the time distribution and range of returns, a 
representation of vegetation structure is obtained (e.g. Lovell et al., 2003). 
LIDAR systems typically operate in the near-infrared (900 to 1064 nm), with 
current Australian commercial airborne sensors recording only discrete portions 
(typically first and last) above a detection threshold of each return using a small 
footprint (e.g. 25 cm). LIDAR is used in this study as a sampling tool, not a 
mapping tool, to characterise vegetation structure at the MISR pixel scale. 



 3

 

 

 

 

 

 

 

 

 

 

Figure 1  The MISR is on board the EOS-Terra satellite and views the land surface at 
nine angles: 0° (An), 26.1° (A), 45.6° (B), 60° (C), and 70.5° (D) in the forward (f) and 

aftward (a) directions. All nine cameras view a single location within approximately 
seven minutes (from Diner et al., 1999). 

 

The aim of this study is to assess the empirical relationship between the BRDF 
and the structure of vegetation in the SBB biogeographic region. This 
information will provide a preliminary assessment of the potential of MISR MVA 
measurements for improving the operational monitoring of vegetation by 
SLATS in Queensland. The three primary objectives are outlined below. 

1. Estimate MISR local mode pixel scale FPC using field and LIDAR data; 

2. Determine the BRDF typology of the land surface in the Queensland SBB 
Biogeographic Region using a time series of MISR acquisitions; 

3. Compare measures of the spectral directional reflectance of the land 
surface to LIDAR derived estimates of FPC. 

 

Study Site 
The Brigalow Belt (BB) bioregion covers 367,404 km2 and the landscape is a 
mosaic of cleared fields, woodland and forest communities which includes 
areas that are remnant, in degradation and/or regeneration. Vegetation 
communities include Acacia harpophylla (brigalow) forest and woodland, 
eucalypt forest and woodland, grassland, dry rainforest, Callitris glaucophylla 
(cypress pine) woodland, and riparian communities. The study site (Figure 2) 
was selected because previous studies have indicated that the area is 
representative of the variation in vegetation structure and disturbances in the 
SBB biogeographic region (Lucas et al., 2001). Secondly, LIDAR and field data 
including FPC that were acquired in late July / early August 2000 over the study 
site were made available for this study. 
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Figure 2  The SBB Biogeographical Region is shown by the blue polygon. A MISR 
scene (Block 111) is shown by the red polygon. The study site is the region within the 
orange polygon. The background is a mosaic of Landsat-7 ETM+ scenes (RGB Bands 

5-4-2). Inset: The location of LIDAR plots in the study site (field subplots are circled) 
over local mode MISR data (RGB 60º F - Nadir - 60º B false colour composite). 

 

Methodology 
MISR Data Acquisition and Preprocessing 

MISR Level 1B2 Terrain Projected Radiance, Level 1B Geometric Parameters, 
and Level 2 Land Surface Products covering the study area were acquired 
through the Earth Observing System (EOS) Data Gateway at the National 
Aeronautics and Space Administration (NASA) Langley Atmospheric Sciences 
Data Centre. The Level 1B2 Terrain Projected Radiance data was acquired in 
Local Mode. Acquisitions contaminated by cloud or that were predominantly 
missing data in the Level 2 product were excluded. The time series of MISR 
Local Mode data analysed for this study this study is listed in Table 1.  

Table 1  Terra orbit, date WRS-2 path, processing version and estimated cloud cover 
for Local Mode MISR data acquired for MISR Block 111. 

Terra Orbit Date WRS-2 Path Processing Version 
18125 15/05/2003 92 20 
18227 22/05/2003 93 20 
18460 07/06/2003 93 20 
19028 16/07/2003 94 20 
19159 25/07/2003 93 20 
19261 01/08/2003 94 20 
20091 27/09/2003 93 20 
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The MISR data were preprocessed to produce Space Oblique Mercator rasters 
of 275m spatial resolution “at-sensor” physical radiance L(W m-2 sr-1 µm-1) in 
and 1100m spatial resolution surface bi-directional reflectance factor (BRF) 
( λφθφθ ,,,, iirr ) in the blue, green, red and NIR spectral bands. 275m spatial 
resolution TOA BRF was calculated from “at-sensor” physical radiance using 
Equation 1 (Martonchik et al., 2000). 

 

Equation 1 

 

For band λ, ρ is TOA BRF, d is solar distance in AU, EO is exo-atmospheric 
solar irradiance, and θi is the solar zenith angle. The next step was to derive 
surface BRF at 275m spatial resolution by removing the atmospheric 
component of this “apparent” reflectance. Due to the limited scope of this study, 
it was important to use existing atmospherically corrected data where possible 
so an approach was devised to calibrate the Local Mode TOA BRF to the MISR 
Level 2 surface BRF product. In order to preserve the spatial variation in the 
relationship between TOA BRF and surface BRF and smooth the spatial 
irregularities in the MISR Level 2 surface BRF product, Ordinary Least-Squares 
(OLS) regression was applied in a moving window approach (Figure 3). 

 

 

 

 

 

 

 

 

Figure 3  Method of moving-window OLS regression. 

 

Semi-empirical Models 

The semi-empirical models used in this study are the Rahman-Pinty-Verstraete 
(RPV) model (Rahman et al., 1993), and the Ross-Thick Li-Sparse Reciprocal 
model (hereafter referred to as Ross-Li) from Version 3.3 of the Algorithm for 
Model Bidirectional Reflectance Anisotropies of the Land Surface (AMBRALS) 
(Lucht et al., 2000). These models were selected to parameterise the BRDF 
due to the strong theoretical and empirical evidence showing they can be linked 
to vegetation structure (Gao et al., 2003; Pinty et al., 2002). 

The four-parameter RPV model is a non-linear model consisting of a modified 
Minneart function, a Henyey-Greenstein phase function, and a function 
accounting for the hotspot (Equation 2) (Gobron and Lajas, 2002). 
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Equation 2 
 
ρ0 and ρ(  represent the spectral amplitude and anisotropy of the BRF, 
respectively. The RPV model represents the main aspects of the BRDF shape 
by separating it into overall brightness (ρ0), bowl-bell shaped anisotropy (k), 
degree of forward or backward scattering (Θ), and hotspot (ρc) components. ρc 
controls the width of the hotspot and is usually assumed to equal ρ0, reducing it 
to a three parameter model (Rahman et al., 1993). Figure 4 illustrates these 
components along the principal plane (plane normal to the sun-sensor-target). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  RPV BRF model shape along principal plane with changing values of the ρ0, 
ρc, Θ and k coefficients (solar zenith 45°). 

 

Linear kernel-driven models are a simplified physical representation of radiative 
scattering by land surfaces (Wanner et al., 1995; Roujean et al., 1992). They 
are an additive combination of kernels describing the independent contribution 
of isotropic, specular, volumetric and/or geometric scattering in a scene for any 
particular wavelength (Equation 3). 

 
Equation 3 

 
The terms fiso, fgeo, and fvol are the spectrally dependent model parameters. The 
isotropic kernel is a constant, and the volumetric and geometric-optical kernels 

),,;,,(.0 kBRF civRPV Θ= ρφθθρρ (
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are represented by the kgeo and kvol terms, respectively. The Ross kernel is a 
single scattering approximation of a horizontally continuous low LAI (Ross-Thin) 
or high LAI (Ross-Thick) canopy, and assumes equal leaf transmittance and 
reflectance, uniform leaf angle distribution and a Lambertian background. The 
Li-Sparse Reciprocal kernel is an expression of the proportion of sunlit crown 
and background resulting from ellipsoids randomly distributed at height h, of 
horizontal radius r, and vertical radius b where mutual shadowing does not 
occur. The overlap between the areas of viewing and illumination shadow is 
dependent on the relative height h/b, and the relative shape b/r of crowns. This 
dependence results in different kernels for different b/r and h/b. In practice 
these are reduced to four cases for oblate (O) or prolate (P) crowns that are 
high (H) or low (L) (Wanner et al., 1995). b/r and h/b were set to 2 and 1 
(referred to as the MODIS case), respectively, according to Lucht et al. (2000). 
Figure 5 illustrates the kernel shapes along the principal plane. 

 

 

 

 

 

 

 

 

 

 

Figure 5  Ross Thin, Ross Thick and Li-Sparse kernels along the principal plane (solar 
zenith 45°). Li-Sparse kernels are shown with different b/r and h/b. MODIS=MODIS 

operational b/r and h/b, H=High, P=Prolate, L=Low, and O=Oblate. 

 
The Levenberg-Marquardt method as programmed in IDL (RSI, 2004) as 
MPFIT by Markwardt (2002), was used for inversion of the RPV BRF model. 
AMBRALS uses LU decomposition as the matrix inversion method used for the 
linear inversion of the Ross-Li model (Lucht et al., 2000). The error term 
minimised by AMBRALS is the Root Mean Square Error (RMSE) (Equation 4). 

 
Equation 4 

 
 
Where for band λ, ρi(measured) is an individual surface BRF measurement for 
viewing direction i. ρi(modelled) is the corresponding modelled surface BRF and N 
is the total number of surface BRF measurements (i.e. 9) for a given pixel. 
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In order to quantitatively test the validity and accuracy of the RPV and Ross-
Thick Li-Sparse inversion results, a comparison of the modelled and observed 
BRF was conducted by using RMSE (Equation 4) as an indicator of inversion 
accuracy. This is the measure indicator of inversion accuracy that has been 
used in previous studies to verify the models used in this study (Maignan et al., 
2004; Hu et al., 1997). The RMSE is divided by the mean of the BRF so it is 
expressed as a percentage. It is important to note that this accuracy analysis 
assumes measurement errors in the surface BRF are negligible. 

It was probable that the land surface had not changed significantly during the 
temporal window of MISR acquisitions. However, the time series still provided 
an opportunity to assess whether there were any interpretable patterns, or lack 
thereof, in the time series of the BRF model coefficients. The NIR and red 
bands were used for this analysis, as these wavelengths represent the 
dominant scattering processes controlled by vegetation structure (Pinty et al., 
2002; Gao et al., 2003). Similar to Lovell and Graetz (2002), plotting the time 
series and assessing the mean and standard deviation were deemed adequate 
tools for assessing the temporal variation in the BRF model coefficients. 

 

LIDAR Data Acquisition 

First and last return LIDAR data were acquired over a one-week period in 
August, 2000. Tickle et al. (2001) describes the LIDAR data in detail so only a 
brief summary is provided here. The acquisition specifications for the LIDAR 
data are listed in Table 2. Figure 2 shows the location of the LIDAR plots within 
the study site. 

Table 2  LIDAR data acquisition specifications. 

LIDAR Acquisition  Specification 
System Optech 1020 5 Hz NIR airborne laser scanner 
Sample spacing < 1.0 m 
Beam divergence 0.3 milliradians 
Swath > 200 m 
Independent returns per second 5000 
Aircraft Bell Jet Ranger helicopter 
Nominal altitude 250 m 
 

For each LIDAR plot shown in Figure 2, there was a 500 m × 150 m area of 
LIDAR returns made available. The full areal extent of the LIDAR returns 
(~1000 m × ~200 m) was made available only for the LIDAR samples with field 
plots. Due to time constraints and the fact that no data on the scan angle of the 
LIDAR returns were directly available, it was assumed that all LIDAR returns 
were measured from the local normal. 

 

Field Measurements 

Lucas et al. (2001) describes the field data and sampling design so only a brief 
summary of the data used is provided here. Field measurements were 
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collected in late July and early August from 12 of the 150 150 m × 500 m plots 
over which LIDAR was acquired (Figure 2). Within these plots, 36 (50 m × 50 
m) subplots were selected based on a random sampling scheme stratified 
using large-scale aerial photography. Within each subplot, FPC field 
measurements were recorded at 1m intervals along three parallel 50m 
transects using the tube and crosshair method described by Specht (1970). For 
each 1m interval, either green leaf, dead leaf, branch, or sky was recorded for 
the overstorey, and either green leaf, dead leaf, bare ground, litter or shrub was 
recorded for the understorey. FPC was calculated as the proportion of all point 
observations that were overstorey green leaf or shrub observations. 

 

Foliage Projective Cover 

The LIDAR returns were separated into ground and non-ground returns using a 
modified version of the progressive morphological filter of Zhang et al. (2003). 
Once the LIDAR returns were classified, the next step was to generate a 
canopy height model (CHM) where the height of each return above the ground 
surface is defined. This was achieved by generating a DTM from the ground 
returns using inverse distance weighted (IDW) interpolation. The height of each 
return above the ground surface is simply the elevation of each return minus 
the elevation of the ground at that coordinate. 

The field FPC data was used to calibrate the LIDAR cover estimates (Equation 
5) to FPC.  Due to the lack of independent data, the LIDAR FPC estimates 
were validated using cross-validation. Excluding a random 10% of the data, 
calculating the calibration coefficients from the remaining 90%, and then 
applying the resulting equation to calibrate the excluded 10% of the data was 
the method of computation. This process was iterated until FPC for every field 
site was estimated independently.  

 
Equation 5 

 
NC is the number of canopy returns and NG is the number of ground returns 
within a defined area. FPC was calculated for each LIDAR plot over an area 
representing 275 m east to west, and 150 m to 200 m north to south. This was 
the full spatial extent of LIDAR data available at MISR local mode resolution. 

 

Results and Discussion 
MISR 

Figure 6 presents a map showing MISR local mode surface BRF. Missing data 
within the study site is obvious, and is a result of missing data in the Global 
Mode surface BRF product that prevents the calibration of the Local Mode TOA 
BRF. Whilst the moving window OLS regression technique was effective in 
calibrating the Local Mode TOA BRF to the Global Mode surface BRF, it is 
important to note that it merely smeared the error existing in the MISR Level 2 
surface BRF product. This study has made no attempt to correct for 
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atmospheric effects by modelling the interaction of light with the atmosphere. 
Atmospheric correction here was purely a calibration of one variable to another, 
therefore any limitations of the MISR Global Mode surface BRF product were 
inherited (see Abdou et al. 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  Example Red and NIR surface BRF images for the 27/09/2003 acquisition 
over the study site. The images are multi-angular red (60º forward), green (nadir) and 
blue (60º backward) composites. A Landsat-5 TM image (18/08/2003) of the study site 

(Bands 5-4-2 RGB false colour composite) is also shown for comparison. 

 

Table 3 shows a comparison of mean relative RMSE mean and standard 
deviation for three MISR local mode acquisitions acquired over different paths 
and under different solar zenith angles over the study site. Both models fit 
better at lower solar zenith angles and it is most pronounced for the Ross-Li 
model. The RPV model has a better fit than the Ross-Li model for all solar 
zenith angles and spectral bands. All mean relative RMSE’s greater than 0.10 
(10%), apart from blue band (15/05/2003 acquisition), resulted from the Ross-Li 
model. Finally, the NIR has a lower mean relative RMSE than all the other 
bands for both models. 

The relative RMSE for the 15/05/2003 acquisition was large compared to the 
other acquisitions at lower solar zenith angles. The atmospheric correction 
results did not show anything inconsistent with the other acquisitions, however 
the azimuthal sampling for this acquisition is very close to the hotspot, which is 
where the sensor, sun and ground target are co-linear. This is unique among all 
the MISR acquisitions analysed in this study, and may indicate an inadequacy 
of the Ross-Li model in modelling the hotspot. This is consistent with Maignen 
et al. (2004), who found that the Ross-Li model was inadequate for modelling 
the hotspot as observed by the POLDER I instrument. 

MISR RED MISR NIR Landsat-5 TM 
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The poorer performance of the Ross-Li model at large solar zenith angles is 
possibly due to mutual shadowing, meaning shadows cast from crowns fall on 
adjacent crowns rather than on the background (Li and Strahler, 1992). In such 
cases, only the sunlit crown tops are visible from the larger zeniths view of 
MISR, which translates into a brightening of the BRF at larger view or solar 
zenith angles. The Li-Sparse kernel does not account for mutual shadowing, 
therefore its assumptions break down under these conditions (Wanner et al., 
1995). The Li-Dense kernel accounts for mutual shadowing, therefore it may 
provide a better fit to the MISR Local Mode acquisitions at large zenith angles 
(Wanner et al., 1995). 

Table 3  Summary mean ( x ) and standard deviation (σ) relative RMSE statistics 
describing the accuracy of the BRF model inversions. Errors greater than 10% of the 

mean BRF are highlighted red. “*” indicates missing data. 

RPV Ross-Li Acquisition Band 
x  σ x  σ 

15/05/2003 Blue 0.129 0.034 0.301 0.045 
Path 92 Green 0.064 0.017 0.253 0.035 
SZA ~ 52° Red 0.053 0.015 0.248 0.039 
 NIR 0.037 0.007 0.173 0.015 
02/09/2003 Blue 0.062 0.019 0.088 0.023 
Path 94 Green 0.022 0.008 0.057 0.014 
SZA ~ 41° Red 0.039 0.013 0.061 0.016 
 NIR 0.016 0.005 0.063 0.008 
27/09/2003 Blue * * * * 
Path 93 Green 0.026 0.009 0.053 0.014 
SZA ~ 33° Red 0.030 0.011 0.056 0.018 
 NIR 0.015 0.007 0.034 0.009 
 

Figure 7 again shows that the RPV model fits better than the Ross-Li model. Of 
interest is the bimodal distribution shown in the red band, which suggests that 
areas of low foliage cover had a lower relative RMSE than areas of high foliage 
cover. In fact, the relative RMSE for low cover areas falls close to the 1:1 line 
with the RPV model. This is consistent with Hu et al. (1997) who found that the 
inversion accuracy of the Ross-Li model was dependent on land cover types for 
which they were designed, however acceptable fits were still found for most 
cover types. This is consistent with the results presented in Figure 7, as it is 
apparent that only outliers exceed 0.1 (10%) relative RMSE. Due to the better 
fit of the RPV and the violated assumptions of the Ross-Li models, only the 
results for the RPV coefficients are subsequently shown. 

Figure 8 shows the spatial-temporal variation in the mean and standard 
deviation for the time series of the RPV BRF model coefficients. The Θ 
coefficient shows spatially consistent variations in the red band. The areas of 
higher foliage cover show up as red (≈-0.2) indicating strong backscattering 
simply due to shadow casting. The areas of lower foliage cover show up as 
yellow (≈-0.1) indicating relatively weaker backscattering. The green areas, 
however, appear to correspond to areas of relatively complex terrain so 
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NIR Red 

Model 

interpretation based of vegetation structure is confounded. The standard 
deviation of the time series of the Θ coefficient appears to be dependent on 
land cover type, with wooded areas showing higher values. This is interpreted 
as varying proportions of sunlit background in response to changing solar 
zenith angle (Gerard and North, 1997). 

 

 

 

 

 

 

 

 

Figure 7  Comparison of the relative RMSE for the Ross-Thick Li-Sparse Reciprocal 
and RPV BRF models for MISR acquisition 27/09/2003. 2D histograms are shown for 

the NIR and red spectral bands. The 1:1 line is shown in red. 

 

The Θ coefficient in the NIR band shows relatively little spatial contrast in 
comparison to the red band, with much lower values (<-0.184). This indicates 
that surface anisotropy has been reduced due to high NIR reflectance of both 
vegetation and soils, and multiple scattering. The standard deviation reflects 
this with very little variation in the predominance of backscattering in wooded 
areas. Local peaks in standard deviation appear to correspond to water run-on 
areas (Australian 1:250,000 Topographic Map Sheet SG: 55-7) therefore these 
areas are probably subject to varying soil moisture and ground cover. Note that 
these areas are also observed in the isotropic coefficient, indicating that 
surface changes are being identified in both the spectral and angular domains. 

The mean k coefficient, which describes the “bowl” or “bell” shaped anisotropy, 
shows consistent spatial variation in the red band, where 4.21% of the mean 
values were greater than or equal to 1.0, indicating a bell shape. Using a ray-
tracing model, Pinty et al., (2002) showed surface vegetation that exhibited 
higher BRF values close to nadir and lower BRF values at larger view zenith 
angles, typically consisted of sparse foliage clumps on a bright background. 
Conversely, the mean k coefficient for the NIR band does not show any values 
greater than 1.0 due to the lack of spectral contrast between the canopy and 
the soil background. The standard deviation of k for the red band shows a 
similar spatial distribution than that of the Θ coefficient standard deviation in the 
red band, again probably in response to solar zenith angle variation. 
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Figure 8  Rasters of the mean and standard deviation of the RPV model k (left), Θ 
(middle), and ρ0 (right) coefficients derived from the red (top) and NIR (bottom) bands 

of the MISR Local Mode time series. AOI = Area of interest. 
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Finally, the spatial-temporal variation in the RPV isotropic coefficient in the red 
band and the NIR band appear to simply show the overall brightness of the 
BRF in each band. Spatially consistent patterns in the RPV model coefficients 
have been commented on qualitatively in numerous publications. Kalluri et al. 
(2001), Gobron and Lajas (2003), and Gobron et al. (2002) have all made 
qualitative interpretations of the spatial organisation of the RPV model 
coefficients. There were also systematic, interpretable spatial and temporal 
variations observed over the study site corresponding to known surface 
variations. 

Localised areas of interest (AOI’s) are located in Figure 9. The relatively high 
temporal standard deviation shown in both the RPV and Ross-Li isotropic 
coefficients at AOI #1 corresponds to an area of woody vegetation regrowth 
and fieldwork verified a fire went through the area shortly before the 27/09/2003 
acquisition. AOI #2 and AOI #3 correspond to woody vegetation of 15.68 and 
28.31 FPC, respectively, as defined by the spatially coincident LIDAR plots. It 
was assumed woody FPC had not changed during the time of observation. 
Interpretation of the time series in the blue band is inhibited due to the high 
proportion of missing values and higher error in the atmospheric correction. 

For AOI #1 (Figure 9), the RPV model shows an increase in the isotropic 
coefficient (ρ0) for both the red and green spectral bands, indicating a reduction 
in photosynthetic activity. In contrast, AOI #2 and #3 do not show this increase 
and remain relatively constant throughout the time series. The time series for 
the Θ coefficient shows the sensitivity of Θ to solar zenith angle, especially for 
the 27/09/2003 observation. As solar zenith angles decreases, the effect of 
shaded background on reflectance anisotropy is minimised, especially in the 
red band where canopy transmittance in minimised due to chlorophyll 
absorption (Gerard and North, 1997). It is hypothesised that the reduction in 
shadow casting results in reduced contrast in Θ between spectral bands. 

The time series for the k coefficient is also indicative of the surface change in 
AOI #1 (Figure 9). The relatively large change in solar zenith angle between 
01/08/2003 and 27/09/2003 for AOI #2 and AOI #3 related to the amount of 
sunlit background diminishing and shaded background increasing. Pinty et al. 
(2002) showed that the potential for k to rise above 1 increases under these 
circumstances, especially as there is distinct spectral contrast between the 
canopy and the background in the red band, and to a lesser extent in the green 
band, due to the bright sandy soils characterising the study site. AOI #1 does 
not show this increase in k to above 1, it actually decreases between these 
dates, suggesting a surface change. k in the NIR band still increases like AOI 
#2 and AOI #3, however this is likely to be due to the relative reduction in 
reflectance anisotropy due to the radiative dominance of the sunlit background. 
AOI #2 is consistently above 1, indicating a heterogeneous surface (FPC = 15). 
Heterogeneity is only exposed at a very low solar zenith angle for AOI #3 (FPC 
= 28) as due to the effect of shadow casting (Pinty et al., 2002). 
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Figure 9  Time series of a 3 by 3 pixel average of the RPV model coefficients for three 
AOI’s during 2003. AOI #1 (left) is a probable fire scar, AOI #2 (middle) is woody 

vegetation (FPC = 15.68), and AOI #3 (right) is also woody vegetation (FPC = 28.31). 

 

LIDAR 

The relationship between LIDAR estimated cover and field estimated foliage 
projective cover is shown in Figure 10. These plots directly validate the LIDAR 
estimates of cover and highlight the biases introduced by the sensor. The R2 
results in Figure 10 (a) shows a strong correlation between the LIDAR and field 
measure of FPC (R2 = 0.85, p<0.05). Of interest is the outlier beneath the lower 
prediction interval. This is a result of the field transects underestimating FPC 
due to subplot heterogeneity. This is not surprising since the LIDAR field 
transects are not azimuthally independent, however it does show that error 
does exist in the ground “truth”. 

The linear regression slope coefficient is less than 1 (0.57), indicating some 
overestimation bias by the LIDAR. The linear regression offset coefficient is 
less than 1% FPC, showing, as expected, there is virtually no difference 
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between LIDAR and field estimates of FPC at zero cover. These observations 
form the basis of the calibration of LIDAR FPC to field FPC, as the only 
difference between the significant linear relationships is in the slope coefficient. 
Figure 10 (b) shows the results of the cross-validation conducted to validate the 
calibrated LIDAR estimates of FPC (p<0.05). The mean RMSE of less than 5% 
indicates the linear regression offset and slope coefficients were robust and not 
too sensitive to any particular observations. The departure of the relationship 
from 1:1 is negligible, despite the lack of observations greater than 50% FPC. 

 

 

 

 

 

 

 

 

 

 

Figure 10  (a) Field validation of LIDAR FPC for all 33 field plots. (b) Cross validation of 
field FPC against calibrated LIDAR FPC for all 33 field plots. 

 

These results clearly show that both canopy composition and footprint size of 
the sensor introduce overestimation bias in FPC. LIDAR data does not 
distinguish between photosynthetic and non-photosynthetic components of a 
canopy. Therefore if the photosynthetic foliage is the canopy attribute of 
interest, especially in open canopies, bias is introduced. Furthermore, the 
footprint size of the data in this study (≈7cm) may interact with the leaves, 
which exist with varying orientations and transmittance/reflectance of NIR light. 
This results in biased FPC estimates, as the partial gaps in foliage within the 
footprint are not detected. It is important to note that these results are not new 
findings. These results in Figure 10 are consistent with unpublished 
independent analyses of the same data by other investigators (Alex Lee, 
Australian National University, personal communication; Trevor Moffiet, 
University of Newcastle, personal communication). Furthermore, the results in 
this study are of comparable accuracy to independent Australian studies that 
have validated FPC estimates using field data (Weller et al., 2003; Witte et al., 
2000). The effects of footprint size and canopy composition on estimates of 
FPC are well documented (Lovell et al., 2003; Weller et al., 2003; Witte et al., 
2000), and current work is aimed at improving LIDAR estimates of FPC. 
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Comparison of FPC and Model Coefficients 

Figure 11 presents significant correlations (p < 0.05) between LIDAR estimates 
of FPC and the RPV coefficients the 01/08/2003 and 27/09/2003 MISR 
acquisitions. Note that only comparisons with FPC for the red band are shown, 
as all other comparisons were uncorrelated. Additionally, polynomials were only 
fitted to the 27/09/2003 acquisitions as these provided the best inversion 
accuracy. The isotropic coefficient for the RPV model shows the highest 
correlation (R2 = 0.44) to FPC. This is not surprising as increased amounts of 
foliage absorb more irradiance, and has been documented by other authors to 
be related to the amplitude rather than the shape of the BRDF (Gao et al. 2003; 
Lovell and Graetz, 2002). Note that the magnitude of the isotropic coefficient 
does not change between dates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Regression of FPC and the RPV model coefficients. The green dots 
represent 01/08/2003 MISR observations (SZA ≈ 51°) and the black dots represent 

27/09/2003 MISR observations (SZA ≈ 33°). SZA = solar zenith angle. 
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Although weaker, the k and Θ RPV coefficients also display systematic 
interpretable trends (R2 = 0.29 and 0.33, respectively). Low FPC observations 
exhibit “bowl” shaped anisotropy, thus are radiatively homogenous at the MISR 
spatial resolution, and medium FPC observations exhibit “bell” shaped 
anisotropy, and thus are radiatively heterogeneous at MISR spatial resolution. 
This trend is not as noticeable for the 01/08/2003 MISR acquisition, most 
probably due to the effects of shadowing at the higher solar zenith angle. It is 
expected that if high FPC (>50%) observations were included, they would 
exhibit “bowl” shaped anisotropy again due to the obscuration of sunlit 
background at low view zenith angles. The degree of backscattering (Θ) 
increases with FPC and is related to the relative reduction of sunlit background 
and increase in sunlit crown and shaded background (Gerard and North, 1997). 

The comparisons shown only weakly correspond to findings of previous studies 
exploring the relationship between the BRDF and vegetation structure (Pinty et 
al., 2002; Lovell and Graetz, 2002). Data and analysis problems have limited 
the comparisons and may well have concealed underlying relationships. These 
problems include the variable sampling density of the LIDAR instrument due to 
windy conditions at the time of acquisition. In particular, the limited spatial 
extent of the LIDAR plots in comparison to the spatial resolution of the MISR 
data may mean the ground data were not representative. This suggests further 
research to link field plot measurements of vegetation structure to the spatial 
resolution of MISR is required. Emphasis is still placed on the scaling strategy 
of Woodcock et al. (1997), where intermediate scale estimates of vegetation 
structure would be aggregated to the scale of MISR and then used to calibrate 
and validate relationships between vegetation structure and surface reflectance 
anisotropy. Alternatives to LIDAR would obviously include SAR (Lucas et al., 
2001) and, for FPC only, Landsat data (Danaher et al., 2004). 

 

Conclusions 
1. Discrete scanning airborne LIDAR is an effective tool for FPC, provided that 

the biases introduced by sensor sampling limitations are understood.   

There were highly significant relationships between the field and LIDAR derived 
estimates of FPC, however interactions between the LIDAR footprint size, 
sampling density and FPC in the SBB mean the LIDAR estimates contain bias. 
The calibration of LIDAR estimated cover, using field estimates of FPC, is 
currently an avenue of research that is being further developed by SLATS 
(Danaher et al., 2004). LIDAR shows significant promise as a sampling tool for 
characterising vegetation structure at the sub-pixel scale of coarse resolution 
MVA sensors such as MISR. This is reflected by other studies integrating 
optical and SAR data with LIDAR (e.g. Lucas et al., 2001). 

 

2. Semi-empirical BRDF model coefficients can be used to characterise 
surface reflectance anisotropy in the Queensland SBB. However their 
sensitivity to vegetation structure requires further research. 
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This study successfully characterised the spectral directional reflectance of the 
land surface in the Queensland SBB Biogeographic Region. The moving-
window OLS regression technique developed in this study resulted in a spatially 
consistent representation of the surface BRF. This development allows Local 
Mode MISR data to be used for the characterization of surface reflectance 
anisotropy, without the need to apply complex atmospheric radiative transfer 
algorithms. It is evident from the results that the RPV model coefficients display 
coherent spatial and temporal variations corresponding to known variations in 
vegetation structure within the SBB. This is the first time semi-empirical BRDF 
models have been compared and related to the land surface using MISR data 
in Australia. The RPV model was more accurate than the Ross-Li model in 
characterising surface reflectance anisotropy. Therefore, it is appropriate for 
future work attempting to link MISR data to the land surface in Queensland. 

 

3. There are interpretable relationships between LIDAR estimated FPC and 
the RPV model coefficients, however a quantitative evaluation of their 
significance is the subject of further study. 

This study showed a simple empirical comparison between the spectral 
directional reflectance of the land surface and FPC in the Queensland SBB, 
therefore it builds on the few studies conducted on the empirical relationship 
between the BRDF and vegetation structure in Australia (Lovell and Graetz, 
2002; Grant, 2000). Future work will aim to assess MISR data for improving the 
discrimination of woody and herbaceous vegetation types and the detection of 
woody vegetation change in Queensland. This study was unique in that it linked 
remotely sensed datasets that have been used to characterise vegetation 
structure but have differing spatial resolutions and extents, acquisition 
characteristics, and errors. Whilst the same empirical relationships may not be 
observed outside the locality of the study site, especially where there is less 
spectral contrast between the canopy and its background, the results from this 
study are unique in the context of vegetation remote sensing in Queensland. 
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